Greater than Parallel:

Distinguishing features can be combined for efficient object identification in dual-target search

to be made:

Supported by U.S. Air Force Office of Scientific Research Grant FA9550-13-1-0087 to Joseph W. Houpt and National Institute of Child Health and Human Development Grant R01HD075800-01 to Stephen D. Goldinger Stephen C. Walenchok¹, Hayward J. Godwin², Joseph W. Houpt³, Michael C. Hout⁴, & Stephen D. Goldinger¹

UNIVERSITY

Godwin, et al. (2015):

Targets:

Object Identification in Visual Search

Two major processes in visual search: Attentional guidance and object identification.

- Guidance biases our attention toward relevant and away from irrelevant visual information (e.g., find shiny things and ignore pillows if looking for car keys). Once the eyes land on a relevant item, it must then be identified and confirmed or disconfirmed as the object of interest. Many studies have examined attentional guidance (e.g., Duncan & Humphreys, 1989; Wolfe, et al., 1989). However, object identification has largely been a black box in studies of visual search.
- Recently, however, Godwin, et al. (2015) examined object identification processes, comparing identification efficiencies when people looked for single items versus two items simultaneously. Results revealed that object identification is more efficient in dual- than in singletarget search when people are looking for complex, real-world **objects** (see also Hout & Goldinger, 2015).
- Why are people more efficient when looking for multiple, complex objects than when looking for singular objects?

The Capacity Coefficient

- Quantitative index of processing efficiency (Townsend and Wenger, 2004; Wenger & Townsend, 2000) that can be used to compare singleand dual-target detection performance.
- Although RTs will usually be slower in dual-target search due to statistical slowdown, the Capacity Coefficient determines the extent of this slowdown, in single-target relative to dual-target search.
- Ratio of single-target to dual-target distractor rejection efficiency, derived from cumulative distribution of RTs.
- Baseline = Unlimited capacity, independent parallel (UCIP) model.

Three Possible Outcomes:

- C(t) = 1: UCIP baseline. Single- and dual-target comparisons are equally efficient.
- C(t) < 1: Limited capacity. Singletarget comparisons are more efficient than dual-target comparisons.
- C(t) > 1: Supercapacity: Dual-target comparisons are more efficient than single-target comparisons. Benefit in multiple-target search (e.g., processing shared features simultaneously). We predicted supercapacity search for more complex objects.

Computing C(t):

Cumulative Distribution Function for UCIP baseline:

 $P\{T_{12} \le t\} = P\{T_1 \le t\} \times P\{T_2 \le t\}$ (1)

Cumulative reverse hazard function; logarithm of Equation 1:

$$K_{12}(t) = K_1(t) \times K_2(t)$$
 (2)

Capacity Coefficient:

$$C_{AND}(t) = \frac{K_1(t) + K_2(t)}{K_{12}(t)}$$
 (3)

Why was object identification more efficient for complex objects? Shared individuating features:

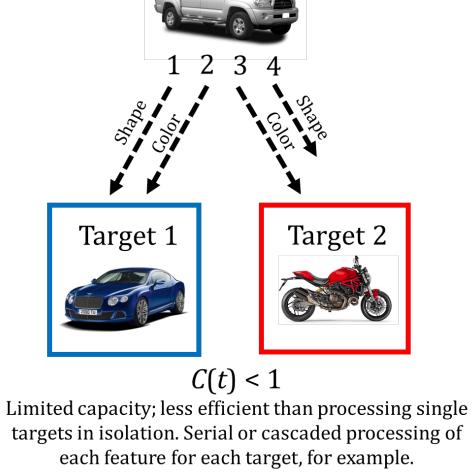
Current object to be identified: Both Comparisons

C(t) = 1UCIP; equivalent to two independent, singletarget comparisons

Target 1

Target 2

Does adding features result in more efficient object identification?



targets' targets' shapes Target 2 Target 1 C(t) > 1Supercapacity; features of both targets are pooled for efficient distractor rejection.

Simple: Two features (color, orientation)

C(t) < 1

Limited Capacity

C(t) > 1Supercapacity

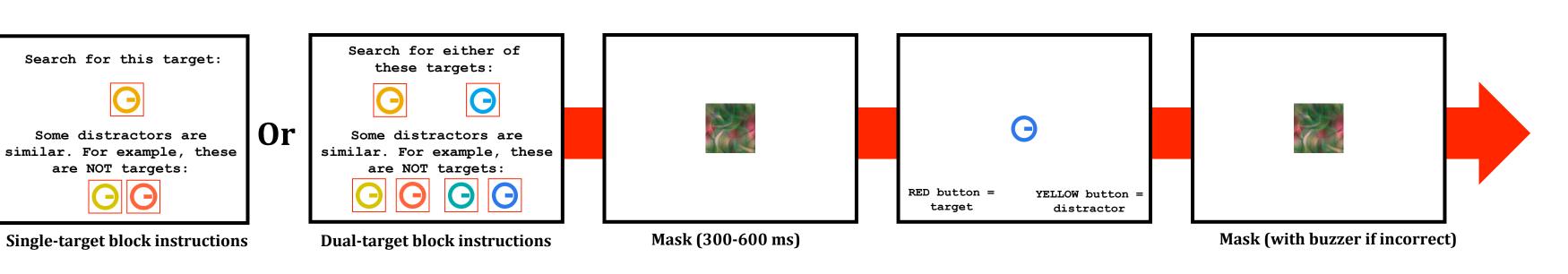
Complex:

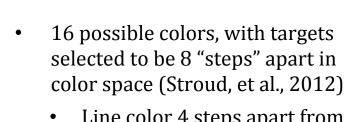
Many features

(color, shape, pattern, etc.)

Features of real objects are difficult to quantify. Solution: Use artificial stimuli, adding features incrementally.

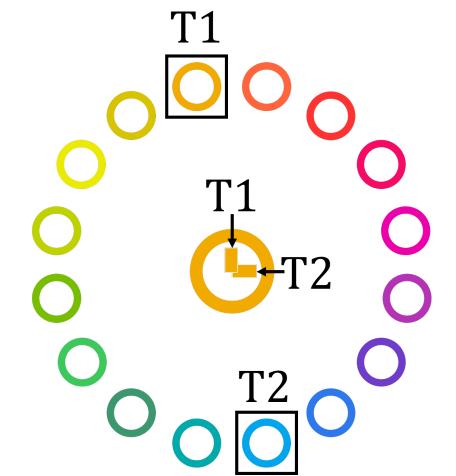
Procedure: All experiments





• Line color 4 steps apart from circle color in Exp. 2 and 3 • 8 possible line orientations, with targets selected to be 90 $^{\circ}$ apart

3 possible dash types:



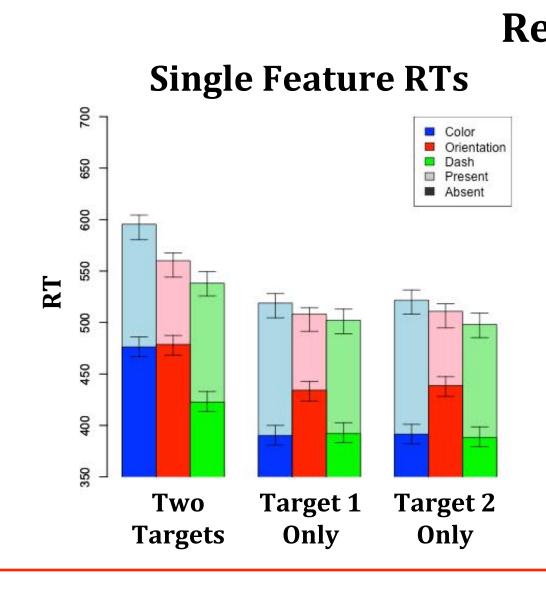
Experiment 1: Single Feature Search

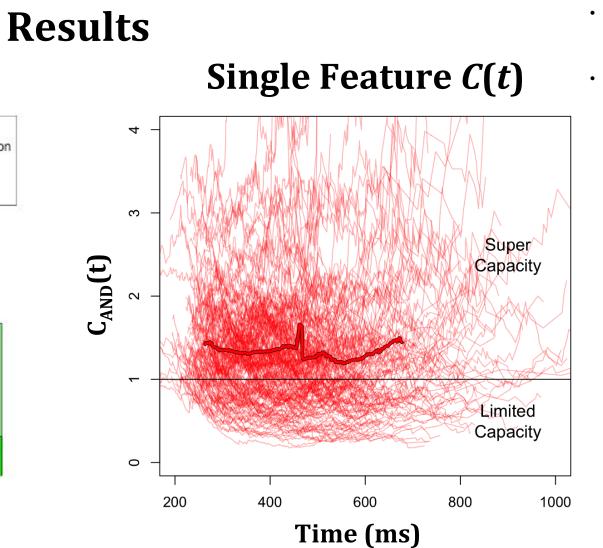
• Feature types counterbalanced between-subjects

Target 1 Target 2 1. Color 2. Orientation 3. Dash Type

Distractors

Example





the Houpt-Townsend capacity test (Burns, et al., 2013; Houpt & Townsend, 2012). Next, Bayesian *t*-tests compare relative likelihood of models with non-zero group-averaged Cz to models with zero-centered average *Cz*. Supercapacity Performance

First, individual *Cz* computed for each subject using

BF (Bayes Factor) = 4.90×10^7

 $M_{Cz} = 2.02$, 95% HPD: [1.43, 2.63]

Experiment 2: Two Feature Conjunction Search

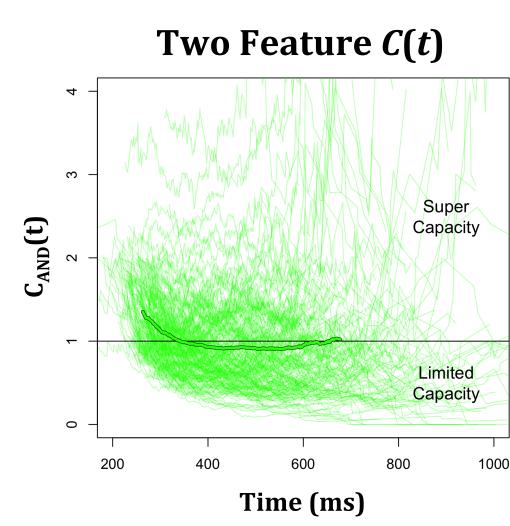
Replication of Godwin, et al. (2015)

3. Circle Color, Line Color

4. Orientation, Dash Type

1. Color, Orientation

2. Color, Dash Type



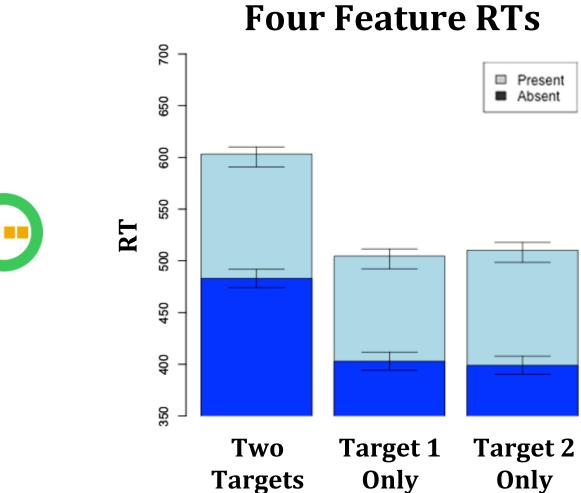
Limited Capacity Performance

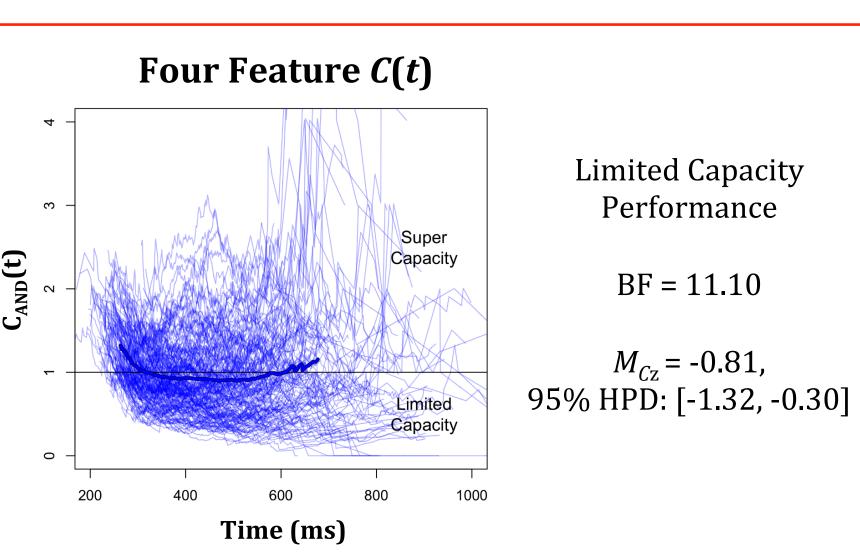
BF = 3.71

 $M_{Cz} = -0.78$, 95% HPD: [-1.30, -0.22]

Experiment 3: Four Feature Conjunction Search

1. Circle color, Line Color, Orientation, **Dash Type**





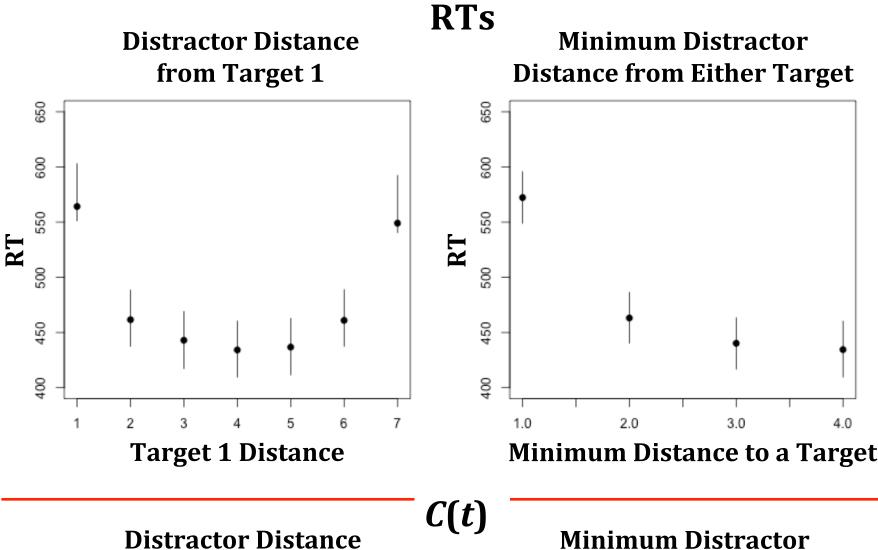
Limited Capacity Performance

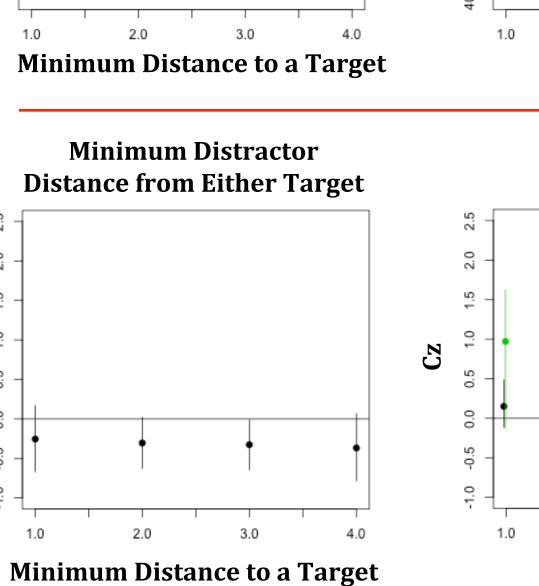
> BF = 11.10 $M_{Cz} = -0.81$,

Why is C(t) reduced for more complex objects?

Possibly due to nonequivalent color and shape feature distances

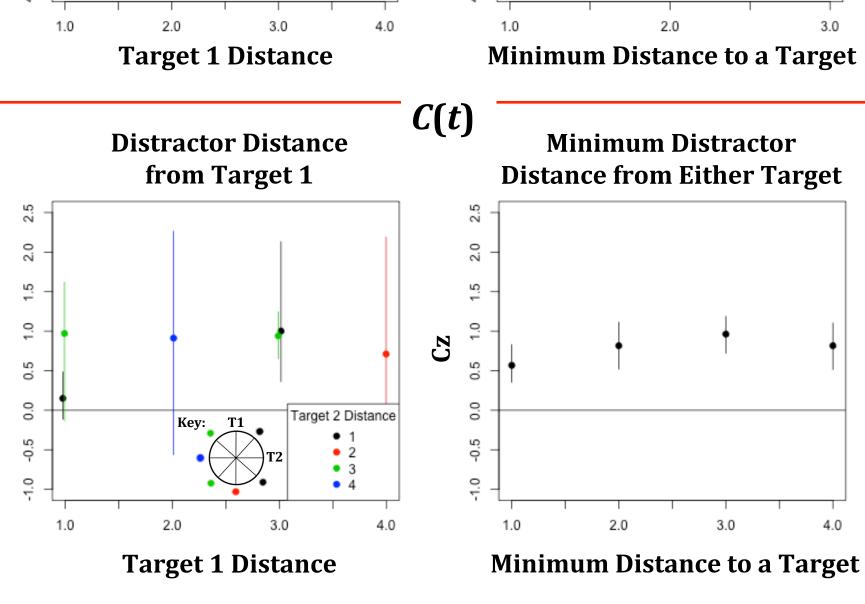
Experiment 1: Color Breakdown





RTs Distractor Distance Minimum Distractor from Target 1 **Distance from Either Target Target 1 Distance** C(t)**Distractor Distance Minimum Distractor**

Experiment 1: Orientation Breakdown



• Distance from Target 1 better explains orientation RTs than minimum distance from

• Target 1 Distance × Minimum Distractor Distance interaction accounts for C(t) (BF = 8). • No effect on C(t) if model only considers minimum distance (BF = 4.93).

Conclusions

- Object identification was efficient when people searched for multiple objects, but only when these targets were very simple and defined by single features (Exp. 1). While Exp. 2 replicated Godwin, et al. (2015), demonstrating limited capacity with simple, two-feature objects, the finding of limited capacity with more complex objects in Exp. 4 was contrary to our predictions.
- Two possible reasons for these findings: (1) The targets in Experiment 1 were entirely unique, sharing no overlapping features with any distractors. In contrast, conjunction targets in Exp. 2 and 3 shared overlapping features with distractors, possibly negating the benefit of *shared* individuating features. (2) Target colors and orientations were not equally distant (180° and 90°, respectively), evident in discrepant identification efficiencies for each.
- Future directions: (1) Examine C(t) when targets share no overlapping features with distractors. (2) Equate target distance on different feature dimensions, and examine C(t) for each.

Minimum distance from either target better accounts for Color RT than distance from • **Neither** color distance measure accounts for C(t) (BF = 80).

from Target 1

Target 1 Distance

References

- Burns, D. M., Houpt, J. W., Townsend, J. T., & Endres, M. J. (2013). Functional principal components analysis of workload capacity functions. *Behavior Research Methods*, 45, 1048–1057.
- Duncan, J. & Humphreys, G. W. (1989). Visual search and stimulus similarity. *Psychological Review*, 96(3), 433-458.
- Godwin, H. J., Walenchok, S. C., Houpt, J. W., Hout. M. C., & Goldinger, S. D. (2015). Faster than the speed of rejection: Object identification processes during visual search for multiple objects. *Journal of Experimental Psychology: Human Perception and Performance*, 41(4), 1007-1020.
- Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. *Attention, Perception, and Psychophysics, 77,* 128-149.
- Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity analysis. *Journal of Mathematical Psychology*, 56, 341–355.
- Stroud, M. J., Menneer, T., Cave, K. R., & Donnelly, N. (2012). Using the dual-target cost to explore the nature of search target representations. *Journal of Experimental Psychology: Human Perception and Performance, 38,* 113–122.
- Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New capacity measures and predictions for a response time inequality series. *Psychological Review, 111,* 1003–1035.
- Wenger, M. J. & Townsend, J. T. (2000). Basic response time tools for studying general processing capacity in attention, perception, and cognition. *The Journal of General Psychology*, 127(1), 67-99.
- Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the Feature Integration model for visual search. *Journal of Experimental Psychology: Human Perception and Performance, 15*, 419-433.