

Introduction

- We seek to understand the efficacy of and limitations to to physical measurements in downtown Tempe, AZ, USA⁸

An Evaluation of Mean Radiant Temperature Estimations in an Arid Urban Climate **Institute for** Research Peter J Crank^{1,2}, Melissa Wagner¹, Ariane Middel^{1,2,3,4}, Dani Hoots¹, Martin Smith⁵, and Anthony Brazel^{1,2}

Results

radiant temperature

		· · · · · · · · · · · · · · · · · · ·		r			
		RMSE	RMSE	MeanBias	Mean	Wilmott	
Simulation	RMSE	Unbias	Systematic	Error	Error	Index	n
Rayman_Kestrel	18.716	12.080	12.900	-5.837	11.163	0.653	49
Rayman_MaRTy	9.141	5.935	6.952	4.800	7.280	0.992	42
ENVI-met_Kestrel	15.388	13.267	7.796	-5.837	11.249	0.850	49
ENVI-met_MaRTy	16.827	11.205	12.553	12.550	13.549	0.977	42

- Kestrel observational data
- resolution (ENVI-met)
- a better fit to numerical models.

Model. Softw. 13, 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5 ⁷Crank, P. J., D. J. Sailor, G. Ban-Weiss, and M. Taleghani, 2018: Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Clim., 26, 188–197, doi:10.1016/j.uclim.2018.09.002. https://linkinghub.elsevier.com/retrieve/pii/S2212095518301007 ⁸Crewe, K., A. Brazel, and A. Middel, 2016: Desert New Urbanism: testing for comfort in downtown Tempe, Arizona. J. Urban Des., 21, 746–763, doi:10.1080/13574809.2016.1187558.http://dx.doi.org/10.1080/13574809.2016.1187558. ⁹Middel, A. and Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona, USA, Science of the Total Environment, in preparation.

¹School of Geographical Sciences and Urban Planning, Arizona State University, ²Urban Climate Research Center, Arizona State University, ³School of Arts, Media and Engineering, Arizona State University, ⁴School of Computing, Informatics, Decision Systems Engineering, Arizona State University, ⁵School of Architecture, University of Minnesota

Social Science Arizona State University

Discussion

Table 1. Dimension of errors for Rayman and ENVI-met simulations relative to observed mean

Conclusions

 \gg MaRTy results indicate better congruence with modeled T_{MRT} than

Wilmott Index of Agreement gives a standardized evaluation metric

Error dimensions decrease with higher sun angles Sun angle is important for estimating T_{MRT} in deep urban canyons

Rayman & ENVI-met perform well in T_{MRT} estimation Variation in agreement attributed to SVF input (Rayman) and grid

 \gg MaRTy incorporates more radiation data to calculate T_{MRT} and thus is

» Highly relevant to arid climates with complex, deep urban canyons.

Acknowledgements

A special thanks to Shai Kaplan, Katherine Crewe, Valeria Benson-Lira, David Hondula,

References

¹Census, U., 2010: 2010 Census Urban and Rural Classification and Urban Area Criteria. https://www.census.gov/geo/reference/ua/urban-rural-

²Chen, L., and E. Ng, 2012: Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29, 118–125,

³Mayer, H. & Höppe, P. Theor Appl Climatol (1987) 38: 43. <u>https://doi.org/10.1007/BF00866252</u>

⁴Krüger, E. L., F. O. Minella, and F. Rasia, 2011: Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ., 46, 621–634, doi:10.1016/j.buildenv.2010.09.006. http://dx.doi.org/10.1016/j.buildenv.2010.09.006. ⁵Matzarakis, A., Rutz, F., Mayer, H., 2007. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J.

⁶Bruse, M., Fleer, H., 1998. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ.